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Abstract. We consider a quantum particle in a waveguide which consists of an infinite straight
Dirichlet strip divided by a thin semitransparent barrier on a line parallel to the walls which is
modelled by aδ potential. We show that if the coupling strength of the latter is modified locally,
i.e., it reaches the same asymptotic value in both directions along the line, there is always a bound
state below the bottom of the essential spectrum provided the effective coupling function is attractive
in the mean. The eigenvalues and eigenfunctions, as well as the scattering matrix for energies above
the threshold, are found numerically by the mode-matching technique. In particular, we discuss
the rate at which the ground state energy emerges from the continuum and properties of the nodal
lines. Finally, we investigate a system with a modified geometry: an infinite cylindrical surface
threaded by a homogeneous magnetic field parallel to the cylinder axis. The motion on the cylinder
is again constrained by a semitransparent barrier imposed on a ‘seam’ parallel to the axis.

1. Introduction

Quantum mechanics of constrained systems is experiencing a new wave of interest connected
with the recent progress in semiconductor physics: nowadays experimentalists are able to
investigate the behaviour of electrons in structures of various shapes, at times rather elaborated.
The small size, extreme material purity, and its crystallic structure make it possible to derive
basic properties of these systems in a crude but useful model in which the electron is considered
as a free particle (with an effective mass) whose motion is constrained to a prescribed subset
of Rd with d = 2, 3, possibly in the presence of external fields.

On the theoretical side, this has inspired questions about relations between spectral and
scattering properties of such systems and the underlying geometry and topology. A class
of systems which has attracted particular attention arequantum waveguides, i.e. tubular
regions supporting a Schrödinger particle. It is known that a deviation from the straight
tube can induce the existence of bound states and resonances in scattering, vortices in
probability current, etc, be it bending [DE, DEM, DES, ES, GJ], protrusion or a similar local
deformation [AS,BGRS,EV1], waveguide coupling by crossing [SRW], or by one or several
lateral windows [ESTV, EV2, EV3] (the related bibliography is rather extensive; the quoted
papers contain many more references).

In this paper we are going to discuss a system closely related to the last named one. It
supposes again a double waveguide; however, the coupling between the two parallel ducts
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Figure 1. Double waveguide with aδ barrier.

will now entail a tunnelling through a thin semitransparent barrier rather than a window in a
hard wall separating them—cf figure 1. To obtain a solvable model we describe the barrier by
a δ potential whose coupling strength may vary longitudinally: the Hamiltonian can be then
formally written as

Hα = −1� + α(x)δ(y) (1.1)

with the barrier supported by thex-axis, where� := R× (−d2, d1) is the double-guide strip.
There are several motivations to investigate a leaky-barrier waveguide pair. First of all, it

is a generalization in a sense of earlier results, because the pierced-hard-wall case of [ESTV]
corresponds toα = 0 in the window andα = ∞ otherwise. Recall that the latter can serve
to describe an actual quantum-wire coupler—see, e.g., [HTW, Ku]—and such a model will
certainly become more realistic if the tunnelling through the barrier of a doped semiconductor
material separating the two guides is taken into account. At the same time, the Hamiltonian (1.1)
covers for variousα a wide variety of situations.

On the mathematical side, theδ potential of (1.1) can be treated more easily than the
hard-wall barrier, since two operators with different functionsα have the same form domain.
To illustrate the difference, one can compare the variational proof of existence of bound states
in theorem 3.1 below with the analogous argument of [ESTV]. A deeper application of the
quadratic-form perturbations allows us to construct the Birman–Schwinger theory for the
waveguide systems in question, in particular, to derive the weak-coupling behaviour of the
bound states. This will be done in a subsequent paper [EK].

Let us describe briefly the contents of the paper. In the next section we shall describe
the model and deduce its spectrum in the ‘unperturbed’, i.e. translationally invariant case.
In section 3 we demonstrate that a local change of the coupling parameter will cause the
existence of bound states provided it is negative in the mean. To illustrate the spectral and also
scattering properties we shall then discuss in detail the example in which the barrier function
is of a ‘rectangular well’ shape. In the final section we will show how the situation modifies if
the semitransparent barrier is placed at the surface of a cylinder threaded by a homogeneous
magnetic field.

2. Preliminaries

2.1. The Hamiltonian

Let� := R × O with O := O2 ∪ O1 := (−d2, 0) ∪ (0, d1) be the configuration space, i.e.,
the part ofR2 occupied by the waveguide. Passing to the rational units, ¯h = 2m = 1, we
may identify the particle HamiltonianHα with the Laplace operator away from the waveguide
boundary and the barrier. To give meaning to the formal expression (1.1) one has to specify
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the boundary conditions. At the outer edges we assume the Dirichlet condition,

ψ(x,−d2) = ψ(x, d1) = 0 (2.1)

while the barrier is transversally the usualδ potential defined conventionally as

ψ(x, 0+) = ψ(x, 0−) =: ψ(x, 0) ψy(x, 0+)− ψy(x, 0−) = α(x)ψ(x, 0) (2.2)

for anyx ∈ R—cf [AGHH, section I.3]—where the subscript denotes partial derivative with
respect toy. The Hamiltonian domain is then

D(Hα) := {ψ ∈W 2
2 (�)|ψ satisfies (2.1) and (2.2)} (2.3)

where the functionα : R→ R, assumed to be piecewise continuous, determines the shape of
the barrier and represents thex-dependent coupling ‘constant’ of the interaction.

For the sake of simplicity we shall exclude the above-mentioned case of a Dirichlet barrier,
α(x) = ∞ at a subset ofR. In that case all the operatorsHα have the same form domain, and
the associated quadratic form is obtained by a simple integration by parts:

qα[ψ ] :=
∫
R×Ō
|∇ψ |2(x, y)dx dy +

∫
R
α(x)|ψ(x, 0)|2 dx (2.4)

D(qα) := {ψ ∈W 1
2 (R× (−d2, d1))| ∀x ∈ R : ψ(x,−d2) = ψ(x, d1) = 0}. (2.5)

The form (2.4) is obviously symmetric and it is not difficult to check that it is closed and thus
indeed associated withHα. Hereafter we adopt the notation of [ESTV]:d := max{d1, d2},
D := d1 + d2, and

ν := min{d1, d2}
max{d1, d2} .

Without loss of generality we may assume thatd2 6 d1 = d.

2.2. The unperturbed system

If α(x) = α is a constant function, we can solve the Schrödinger equationHαψ = k2ψ by
separation of variables. To get the transverse eigenfunctions we have to match smoothly the
solutions in the two ducts,C2 sin`(y +d2) andC1 sin`(y−d1), chosen to satisfy the condition
(2.1). If `d1, `d2 are not multiples ofπ we get thus the following condition on eigenvalues of
the transverse part of the Hamiltonian:

−α = `(cot`d1 + cot`d2). (2.6)

Remark 2.1. If d1, d2 are rationally related the Schrödinger equation can be also solved by
` = πnp

d1
= πnq

d2
, n ∈ N \ {0}. However, such wavefunctions are zero aty = 0, and therefore

independent ofα. In this sense they represent a trivial part of the problem. A prime example
is the symmetric waveguide pair,d1 = d2, where this observation concerns every solution
antisymmetric w.r.t.y = 0. It is reasonable to concentrate on the nontrivial part only. If
ν ≡ d2

d1
= p

q
, we denote byGν the subspace inL2(−d2, d1) spanned by the solutions of (2.6).

Putting thenHν := L2(R)⊗ G⊥ν , we shall restrict our attention to the operatorHα � Hν ; for
the sake of simplicity we shall denote the restriction by the symbolHα again. The trivial part
is absent, of course, ifν is irrational.

From the spectral condition (2.6) we get a sequence of eigenvalues (in the natural ascending
order) of (the nontrivial part of) the transverse operator; we denote it as{νn(α)}∞n=1. The
corresponding eigenfunctions are

χn(y;α) = (−1)jNn sin
√
νndj sin

√
νn(y + (−1)j dj ) (2.7)
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for y ∈ Oj , j = 1, 2, whereNn is the normalization factor chosen in such a way thatχn would
be a unit vector inL2(−d2, d1), i.e.

N2
n =

2
√
νn√

νnd1 sin2√νnd2 +
√
νnd2 sin2√νnd1− sin

√
νnd1 sin

√
νnd2 sin

√
νnD

. (2.8)

Furthermore, the Green function of the Hamiltonian (1.1) can be written explicitly:

Gα(x, y, x
′, y ′; k) =

∞∑
n=1

i

2kn
eikn|x−x ′|χn(y;α)χ̄n(y ′;α) (2.9)

where the effective momentum in thenth transverse mode iskn :=
√
k2 − νn(α).

Elementary properties of the transverse eigenvalues follow from the spectral
condition (2.6) by means of the implicit-function theorem; we collect them in the lemma
below.

Lemma 2.2. (a) Let {mi}∞i=0 be the sequence obtained from the setN ∪ ν−1N by natural
ordering. Thenπ2d (n− 1) 6 π

d
mn−1 <

√
νn <

π
d
mn 6 π

d
n holds for alln ∈ N \ {0, 1}.

(b) The functionα 7→ νn(α) is strictly increasing and continuous for alln ∈ N \ {0}.

3. Existence of bound states

Depending on the choice ofα, the operators (1.1) offer a variety of spectral types. In this
paper we shall concentrate on the situation when the barrier describes a local perturbation of
the system with separating variables considered above. The locality is at that understood as
a decay of the functionα; in other words, we shall assume that lim|x|→∞ α(x) = α0. It is
important that the limiting valueα0 is the same at both directions.

In such a case, it is easy to localize the essential spectrum. One employs a simple bracketing
argument similar to that of [ESTV, section II]) squeezingHα between a pair of operators
with Dirichlet and Neumann conditions on segments perpendicular to thex-axis placed to
both sides of the centre. By the minimax principle only the tails of the estimating operators
contribute to their essential spectra; since the ‘cuts’ can be chosen arbitrarily far we obtain
σess(Hα) = [ν1(α0),∞).

Less trivial is the existence of a discrete spectrum. It is known that any ‘window’ in
the impenetrable barrier induces a bound state. This fact was established first for sufficiently
wide windows [Po]; later an independent and more general proof was given [ESTV] with no
lower bound on the window width. The present case is more complicated because the effective
coupling strengthα − α0 can be sign-changing. We shall show that it is sufficient if it is
negative in the mean, thus creating a locally stronger tunnelling between the two channels.

Theorem 3.1.Assume that(i) α−α0 ∈ L1
loc(R), (ii) α(x)−α0 = O(|x|−1−ε) for someε > 0

as|x| → ∞. If
∫
R(α(x)− α0) dx < 0, thenHα has at least one isolated eigenvalue below its

essential spectrum.

Proof. We use a variational argument whose idea comes back to [GJ]; see also [DE, RB],
and [ESTV, section III] for a coupled waveguide system. First of all, assumption (ii) tells us
that lim|x|→∞ |x|1+ε(α(x)− α0) = 0, i.e., to anyδ > 0 there isaδ > 1 such that

|x| > aδ ⇒ |α(x)− α0| < δ

|x|1+ε
. (3.1)

It is useful to introduce a shifted energy form: for an arbitrary9 ∈ D(qα) we put

Qα[9] := qα[9] − ν1(α0)‖9‖22. (3.2)
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Since the essential spectrum ofHα starts atν1(α0), we have to find a trial function9
such thatQα[9] is negative. We obtain it by a suitable modification of the function
90(x, y) := χ1(y;α0) which formally annuls (3.2) forα = α0 but does not belong toL2.
The trial function has to decay; in order to make the positive contribution from its tails to the
kinetic energy small, we employ an exterior scaling. We choose an intervalA := [−a, a] for
somea > 1 and a functionϕ ∈ S(R) in such a way thatϕ(x) 6 1 andϕ(x) = 1 onA. Then
we can define the family{ϕσ : σ ∈ R} by a scaling exterior toA:

ϕσ (x) :=
{
ϕ(x) if |x| 6 a
ϕ(±a + σ(x ∓ a)) if ±x > a.

(3.3)

By construction,|ϕσ (x)| 6 1 holds for allx ∈ R. The sought trial function will be chosen in
the form9(x, y) := ϕσ (x)χ1(y;α0). We employ the relations‖ϕ̇σ‖22 = σ‖ϕ̇‖22, and

qα[9] = qα0[9] +
∫
R
(α(x)−α0)|9(x, 0)|2 dx

qα0[9] = ‖ϕ̇σ‖22 + ν1(α0)‖ϕσ‖22
the last one of which is obtained by tedious but straightforward calculation. This yields

Qα[9] = σ‖ϕ̇‖22 + |χ1(0;α0)|2
∫
R
(α(x)− α0)|ϕσ (x)|2 dx. (3.4)

We now split the integration region into two mutually disjoint parts,A andR \A. Using (3.1)
together with the above-mentioned bound onϕσ we arrive at the estimate

Qα[9] < σ‖ϕ̇‖22 +
4δ|χ1(0;α0)|2

εaε
+ |χ1(0;α0)|2

∫
R
(α(x)− α0) dx. (3.5)

By assumption we have
∫
R(α(x)− α0) dx < 0 and sinceχ1(0;α0) is nonzero, the last term is

negative; it is then enough to chooseδ andσ sufficiently small to makeQα[9] negative. �

Remark 3.2. A case of particular interest concerns weakly coupled Hamiltonian of the type
(1.1), i.e. the situation whenα differs fromα0 only slightly. In that case one can develop a
Birman–Schwinger analysis in order to derive the perturbative expansion of the ground state
energy in terms of a parameter measuring the ‘smallness’ ofα − α0. This will be done in a
separate paper [EK]; here we just borrow a result for a further use in this work.

There are different ways in whichα − α0 can be small. Suppose that the support of the
perturbation shrinks, i.e. introduceασ (x) := α(x/σ) with the scaling parameterσ ∈ (0, 1]
and consider the limitσ → 0+. We have the following result [EK].

Theorem 3.3.Suppose thatα − α0 is nonzero and belongs toL1+ε(R, dx) ∩ L1(R, |x|2 dx)
for someε > 0. ThenHασ has for smallσ at most one simple eigenvalueE(σ) < ν1(α0),
and this happens if and only if

∫
R(α(x) − α0) dx 6 0. If this condition holds the following

expansion is valid:√
ν1− E(σ) = −σ

2
|χ1(0;α0)|2

∫
R
(α(x)− α0) dx

+
σ 2

4
|χ1(0;α0)|2

∞∑
n=2

|χn(0;α0)|2

×
∫
R2
(α(x)− α0)

e−σ
√
νn−ν1|x−x ′|
√
νn − ν1

(α(x ′)− α0) dx dx

+O(σ 3). (3.6)
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4. A ‘rectangular well’ example

To illustrate the above result and to analyse the behaviour of coupled waveguides in more detail
we shall now investigate an example. We choose the barrier functionα so that the corresponding
Schr̈odinger equation can be solved numerically; this happens ifα is a steplike function which
makes it possible to employ the mode-matching method. The simplest nontrivial case concerns
a ‘rectangular well’ of a width 2a > 0,

α(x) :=
{
α1 if |x| < a

α0 if |x| 6 a
for someα1, α0 ∈ R. In view of theorem 3.1 this waveguide system has bound states if and
only if α1 < α0. In particular, one expects that in the case whenα1 = 0 andα0 is large positive
the spectral properties will be similar to those of the impenetrable barrier situation studied
in [ESTV]. On the other hand, the mode-matching method allows us to treat on the same
footing the scattering processes in our waveguide. Then there is no need to impose the above
condition, because the ‘barrier’ situation,α1 > α0 is expected to exhibit nontrivial scattering
behaviour as well.

Henceforth, we shall denote the transverse eigenvalues in the two regions asνsn := νn(αs),
s := 0, 1, n ∈ N \ {0}. In view of the natural mirror symmetry with respect to they-axis
we may consider separately the symmetric and antisymmetric solutions, i.e. to analyse the
halfstrip with the Neumann or Dirichlet boundary condition atx = 0, respectively. For
the sake of simplicity we shall also restrict our attention to the case min{α0, α1} > αm :=
−(d−1

1 +d−1
2 ), when the lowest transverse eigenvalue is positive everywhere in the waveguide.

The considerations presented below remain valid even without this assumption; one has just to
replace the trigonometric ground state eigenfunction for hyperbolic which makes the formulae
cumbersome.

4.1. Bound states

Let us first derive an estimate which allows us to roughly localize the eigenvalues. It is based on
a bracketing argument similar to that used to specify the essential spectrum at the beginning of
section 3. The Hamiltonian can be squeezed between a pair of operators,H(N)

α 6 Hα 6 H(D)
α ,

with additional Dirichlet/Neumann ‘cuts’ at segments perpendicular to the waveguide axis,
x = ±a. The spectra of the estimating operators can be easily found and the sought estimate
comes from the eigenvalues of the middle part situated belowν0

1 in combination with the
minimax principle. In particular, we find that the numberN of isolated eigenvalues satisfies
the bounds

ND + 1> N > ND :=
[

2a

π

√
ν0

1 − ν1
1

]
where [·] denotes the entire part; this complements theorem 3.1. Furthermore, thenth
eigenvalueEn of Hα is estimated by

ν1
1 +

(
(n− 1)π

2a

)2

6 En 6 ν1
1 +

(nπ
2a

)2
(4.1)

while the critical halfwidthan at which thenth eigenvalue emerges from the continuum satisfies
the bounds

(n− 1)π

2
√
ν0

1 − ν1
1

6 an 6
nπ

2
√
ν0

1 − ν1
1

. (4.2)
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After this preliminary, let us pass to the mode-matching method. We start with the simpler
case when the waveguide exhibits a mirror symmetry w.r.t. thex-axis, i.e.d1 = d2 = d.

4.1.1. The symmetric case.If ν = 1, the Hamiltonian decouples into an orthogonal sum
of the even and the odd parts, the spectrum of the latter being clearly trivial—cf remark 2.1.
The two symmetries allow us to restrict ourselves to the part of� in the first quadrant, with
Neumann or Dirichlet condition in the segment(0, d) of they-axis, and take the transverse
eigenvalues determined by the spectral conditions

−α0 = 2` cot`d if x > a
−α1 = 2` cot`d if 0 6 x < a.

The corresponding transverse eigenfunctions are

χn := −N0
n sin

√
ν0
n(y − d) if x > a

φn := −N1
n sin

√
ν1
n(y − d) if 0 6 x < a

(4.3)

whereNs
n is a normalization factor chosen to makeχn, φn unit vectors inL2(0, d), i.e.

(Ns
n)

2 = 4
√
νsn

2
√
νsnd − sin 2

√
νsnd

. (4.4)

The overlap integrals of elements of the two bases are easily seen to be

(χm, φn) = N0
mN

1
n

ν0
m − ν1

n

(√
ν1
n sin

√
ν0
md cos

√
ν1
nd −

√
ν0
m sin

√
ν1
nd cos

√
ν0
m

)
. (4.5)

A natural ansatz for the solution of an energyE ∈ [ν1
1, ν

0
1) is

9s/a(x, y) =
∞∑
n=1

bs/an e−qn(x−a)χn(y) for x > a

9s/a(x, y) =
∞∑
n=1

as/an

{ coshpnx
coshpna

sinhpnx
sinhpna

}
φn(y) for 06 x < a

(4.6)

where the subscripts and superscripts (we will omit them for the most part)s, a distinguish the
symmetric and antisymmetric case, respectively. The longitudinal momenta are defined by

qn :=
√
ν0
n − E pn :=

√
ν1
n − E.

As an element of the domain (2.3), the function9 should be continuous together with its
normal derivative at the segment dividing the two regions,x = a. Using the orthonormality
of {χn} we get from the requirement of continuity

bm =
∞∑
n=1

an(χm, φn). (4.7)

In the same way, the normal-derivative continuity atx = a yields

bmqm +
∞∑
n=1

anpn

{
tanh
coth

}
(pna)(χm, φn) = 0. (4.8)

Substituting from (4.7) to (4.8), we can rewrite it as an operator equation

Ca = 0 (4.9)
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where

Cmn :=
(
qm + pn

{
tanh
coth

}
(pna)

)
(χm, φn) (4.10)

with the overlap integrals given by (4.5).
It is straightforward to compute the norms of the functions (4.6); sincen−1qn ann−1pn

tend toπ
d

asn→∞ (see lemma 2.2 (a)), the square integrability of9 requires the sequences
{an} and{bn} to belong to the spacè2(n−1).

To make sure that the equation (4.9) makes sense, it is enough to notice that if9 is an
eigenvector ofHα, it must belong to the domain of any integer power of this operator. It is
easy to check that

∀i ∈ N \ {0} : 9 ∈ D(Hi
α)⇔ {an}, {bn} ∈ `2(n4i−1). (4.11)

Hence, the sought sequences should belong to`2(nr) for all r > −1, i.e. both sequences have a
faster than powerlike decay. This fact also justifiesa posteriorithe interchange of summation
and differentiation we have made in the matching procedure. Furthermore, one can use it to
check the existence of a convergent series of cut-off approximants to the solutions in the same
way as in [ESTV, section IV.1].

Remark 4.1 (an alternative method).We can use the orthonormality of{φn} instead of{χn}
and express{an} in analogy to (4.7), and then substitute it into (4.8). We find that the coefficient
sequence{bn} is then determined by the following equation:

b +Kb = 0 (4.12)

where

Kmn := 1

qm

∞∑
k=1

(χm, φk)pk

{
tanh
coth

}
(pka)(φk, φn). (4.13)

The two approaches (4.9), (4.12) are, of course, equivalent. However, it may be useful to
combine them in order to get a good idea about the numerical stability of the solution. For
instance, in the situation of [ESTV] the approximants of (4.9) approach the limiting values
from above, while those referring to (4.12) are increasing.

4.1.2. The asymmetric case.Let us pass now to the case, when the widths of the ducts are
nonequal,ν 6= 1. In view of the mirror symmetry, we shall consider the right-halfplane part
of � only, with the Neumann and Dirichlet condition on the segment [−d2, d1] of they-axis.
The asymmetric case differs from the previous one just in the choice of transverse basis. Now
we can take

χn(y) := χn(y;α0) if x > a
φn(y) := χn(y;α1) if 0 6 x < a

(4.14)

whereχn(·, αs) are of the form (2.7) with the normsNs
n given by (2.8). The corresponding

eigenvaluesν0
n, ν

1
n are then determined by

−α0 = `(cot`d1 + cot`d2) if x > a
−α1 = `(cot`d1 + cot`d2) if 0 6 x < a

(see (2.6)) and the overlap integrals are

(χm, φn) = N0
mN

1
n

ν0
m − ν1

n

(√
ν1
n sin

√
ν0
md1 sin

√
ν0
md2 sin

√
ν1
nD

−
√
ν0
m sin

√
ν1
nd1 sin

√
ν1
nd2 sin

√
ν0
mD

)
. (4.15)
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The rest of the argument does not change and one has again to solve the equation (4.9)
(respectively, (4.12)). By a straightforward modification of the above argument, one can also
check that the coefficient sequences have a faster than powerlike decay and that the equation
can be solved by a sequence of truncations.

4.2. Scattering

As we said in the opening of this section, the scattering can be treated in an analogous way.
The incident wave is supposed to be of the form e−ikrxχr(y;α0), i.e., to come from the right
in therth transverse mode; we have introduced the effective momentumkr := √k2 − ν0

r . We
denote byrrn, trn, respectively, the corresponding reflection and transmission amplitudes to
thenth transverse mode. Due to the mirror symmetry, we can again separate the symmetric
and antisymmetric situation w.r.t.x = 0 and write

rrn = 1
2(ρ

s
rn + ρarn) trn = 1

2(ρ
s
rn − ρarn) (4.16)

whereρσrn, σ = s, a, are the reflection amplitudes in a half of our waveguide with the Neumann
and Dirichlet condition atx = 0, respectively. We use the following ansatz:

9s/a(x, y) =
∞∑
n=1

(δrne
−ikn(x−a) + ρs/arn eikn(x−a))χn(y) for x > a

9s/a(x, y) =
∞∑
n=1

as/an

{ cospnx
cospna

sinpnx
sinpna

}
φn(y) for 06 x < a

(4.17)

for the total energyk2 of the incident wave in therth mode. The quantitiespn := √k2 − ν1
n

are effective momenta in the ‘interaction’ region. Matching these functions smoothly atx = a
we arrive in the same way as above at the equation

Ca = f (4.18)

where

Cmn :=
(

ikm + pn

{
tan
− cot

}
(pna)

)
(χm, φn) (4.19)

fm := 2ikmδrm (4.20)

where the indexr corresponds to the incident wave and the overlap integrals are given again
by (4.15). The reflection amplitudes are then given by

ρrm = −δrm +
∞∑
n=1

an(χm, φn). (4.21)

They determine the fullS-matrix via (4.16). A quantity of direct physical interest is rather the
conductivity given by the Landauer formula. If we express it in the standard units 2e2/h, it
equals

G(k) =
[k]∑

m,n=1

kn

km
|tmn(k)|2 (4.22)

where tmn(k) are the coefficients (4.16). The summation runs over all open channels.
Another physically interesting quantity is the probability flow distribution associated with
the generalized eigenvector9 = 9s +9a, which is defined in the standard way,

Ej(Ex) = 2Im
(
9̄(Ex)∇9(Ex)) . (4.23)
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Figure 2. Bound state energies versus the halfwidthã in the symmetric case for̃α0 = 105 (�),
50 (◦), 10 (∗), 5 (×), 2 (+), 0.5 (•).

4.3. Numerical results

Since the spectrum behaves naturally at scaling transformations it is reasonable to solve
equations (4.9) and (4.18) in the natural non-dimensional quantities. We mark them by tilde
and use them to label the axis in the figures, e.g.,a = dã, αs = α̃s/d, E = (π/d)2Ẽ or
k = (π/d)k̃.

4.3.1. Bound states.

Eigenvalues. Figure 2 shows the bound-state energies as functions of the ‘window’ halfwidth
a for an ‘empty window’,α1 = 0. Several curves referring to different values of the barrier
coupling constantα0 are plotted. In accordance with the general results of section 4.1, the
energies decrease monotonously with the increasing ‘window’ width and one can sandwich
them between the estimates (4.1). We also see that for a fixeda the energies increase with
respect toα0 andν; recall that their number increases as a function ofα0 but it decreases as the
waveguide becomes more asymmetric—these facts are clear from (4.1), (4.2), and lemma 2.2.
It is illustrative to confront our results for largeα0 with the energies computed in [ESTV] for
the case which corresponds formally toα0 = ∞. Comparing figure 2 with figure 2 of [ESTV]
we see that our result for̃α0 = 105 is practically identical with the latter.
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Figure 3. Ground state eigenfunctions in the symmetric case fora/d = 0.15.

Eigenfunctions. The evolution of the ground state wavefunction with respect toα0 for an
empty window of the fixed halfwidth̃a = 0.15 is illustrated in figure 3. If the barrier tunnelling
is negligible,α̃0 = 105, the picture is indistinguishable from figure 3 in [ESTV]. Asα0 becomes
smaller we see how the wavefunction part penetrating the barrier grows.

Threshold behaviour. Consider again the empty-window case,α1 = 0. As a consequence
of theorem 3.3 we get for the ground state energy for any fixedα0 and a narrow window the
asymptotic formula (cf (3.6))

E(a) = ν0
1 − ca2 +O(a3) c := a2α2

0|χ1(0;α0)|4. (4.24)

On the other hand, in the case of a window in the Dirichlet barrier,α0 = ∞, it was conjectured
in [ESTV] that we may suppose

E(a) =
(π
d

)2
− C(ν)a4 +O(a5) (4.25)

asa→ 0+. The conjecture is supported by a two-sided asymptotic estimate [EV2]: there are
positivec1, c2 such that

−c1a
4 6 E(a)−

(π
d

)2
6 −c2a

4

(for a generalization of this result to a larger number of windows and higher dimensions
see [EV3]). Quite recently, a proof of (4.25) has been proposed by Popov [Pop].



4486 P Exner and D Kreǰciřı́k

Figure 4. Narrow-window asymptotic power and coefficient as functions ofα0.

This seems to be a paradox. In order to make sense of these considerations, we suppose that
E(a) = ν0

1 − caβ for smalla of an interval 0.016< ã < ãmax (ãmax = ãmax(α0) is chosen in
such a way as to include the best correlated points), and investigate numerically the dependence
of the coefficientsβ andc (c̃ = dβ+2c/π2) on α0. The powerlike asymptotic behaviour is
confirmed when we redraw the first eigenvalue curves of figure 2 in the logarithmic scale. The
obtained dependence of the coefficients onα0 in the symmetric caseν = 1, is illustrated in
figure 4. We see that the power reaches the valuesβ = 2, 4 for small and largeα0, respectively
(a slight shift in the first graph is due the truncation; the convergence becomes very slow for
smalla). At the same time, the numerically foundc for smallα0 coincides with that of (4.24).

Of course, the asymptotical behaviour is governed by (4.24) for any finiteα0. The above
result says only that the transition from biquadratic to quadratic asymptotics occurs for large
α0 at values ofa still smaller than those we have used.

Nodal lines. In figure 5 we plot the third eigenfunction. Its nodal lines are almost straight
showing thus that the ‘spikes’ at the window edges act almost as a hard barrier. On the other
hand, a simple argument based on the reflection principle shows that the nodal lines cannot
be straight. Closer inspection shows that they have the form of a bow bent outward. The
maximum bending is shown in figure 6. It decreases rapidly with the window width which
confirms the tunnelling nature of the effect. Nodal lines of higher eigenfunctions exhibit (as
functions ofα0) irregularities connected with the changes in the number of the modes.
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Figure 5. The eigenfunction of the second excited state forν = 1, a/d = 5,α1 = 0.

4.3.2. Scattering.

Conductivity. Figure 7 illustrates the evolution of the conductivity for the particle coming
from the right and leaving to the left as a function of the momentumk and the widthd2. We
see that the perturbation,−α0 in the window, deforms the ideal steplike shape with jumps at
transverse thresholds; deep resonances are clearly visible. For an almost impenetrable barrier,
α̃0 = 105, we practically reproduce figure 5(a) of [ESTV].

Probability flow. Examples of the quantum probability flow are shown in figure 8. The flow
patterns change with the momentum of the incident particle and the value ofα0. They exhibit
conspicuous vortices at the resonance energies which correspond to the ‘trapped part’ of the
wavefunction. An interesting phenomenon is illustrated on the first two graphs of figure 8:
for α̃0 = 105 there is a double vortex (corresponding to the sharp stopping resonance of
figure 7), right-handed in the upper duct, while forα̃0 = 50 we get a left-handed vortex.
The conductivity is small in these situations so the waveguide system is effectively closed for
the particle transport. Asα0 decreases the conductivity grows and the waveguide opens—
cf figure 8 forα̃0 = 10, 2.

5. An Aharonov–Bohm cylinder

In the closing section we want to show now how the preceding considerations modify for a
different geometry: we consider a nonrelativistic quantum particle living on the surface of an
infinite straight cylinder of a radiusR, which is threaded by a homogeneous magnetic field
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Figure 6. The maximum bending of nodal lines of third eigenfunctions in the symmetric case as a
function ofα0 for a fixed window width.

EB parallel to the cylinder axis. We assume that the motion is further restricted by aδ-barrier
supported by a line parallel to the axis.

5.1. General considerations

The configuration space is sketched in figure 9 where we indicate also how the coordinate
system is chosen. In these coordinates we have

�̃ := {(x, y, z) ∈ R3|y2 + z2 = R2}. (5.1)

Choosing the gauge so that the electromagnetic potentials fulfilϕ(Ex) ≡ 0 and EA(Ex) = 1
2
EB× Ex,

the Hamiltonian acquires the form

H̃α := (−i∇ + EA)2 = −1− i
B

2
(y∂z − z∂y) +

B2R2

4
(5.2)

away from the barrier, whereB := | EB|; as before we put ¯h = 2m = 1, and alsoe = −1 having
in mind an electron. The subscriptα indicates the real function which defines the shape of
the barrier as in the strip waveguide situation; it will enter the boundary condition (5.4) below.
The vector potential has, obviously, the angular componentAϕ ≡ A and it equals

A = 1

2
BR = φ

2πR
(5.3)
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Figure 7. Right–left conductivity as a function ofk, d2 for d = π , a = 2π , α1 = 0.

whereφ is the magnetic flux through the cylinder. Recall that in the rational units we use here,
the natural unit of the magnetic flux isφ0 := (2π)−1. Since we deal with a quantum system
living on a surface it is natural to ‘unfold’ it and to study (5.2) on a planar strip with appropriate
boundary conditions, namely

ψ(u, 0+) = ψ(u, 2πR−) =: ψ(u, 0) ψv(u, 0+)− ψv(u, 2πR−) = α(u)ψ(u, 0) (5.4)
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Figure 8. Probability flow patterns for̃k = 1.745 andα1 = 0 in the symmetric situation.

Figure 9. Cylindrical strip with aδ barrier in axial magnetic field.

where the subscript denotes again a partial derivative. To this aim, we introduce the unitary
transformationU : L2(�̃)→ L2(R× [0, 2πR], du dv) by

(Uψ)(u, v) := ψ
(
u,R cos

v

R
,R sin

v

R

)
(5.5)
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which maps�̃ onto the strip� := R× [0, 2πR]; the operatorH̃α is then unitarily equivalent
to

Hα := UH̃αU−1 = −∂2
u + (−i∂v +A)2 (5.6)

with the domain

D(Hα) := {ψ ∈W 2
2 (�) | ∀u ∈ R : b.c.(5.4) are satisfied}. (5.7)

We will need also the quadratic formqα associated withHα. Its domain isD(qα) :=W 1
2 (�)

and

qα[ψ ] :=
∫
�

|∇ψ |2(u, v)du dv +
∫
R
α(u)|ψ(u, 0)|2 du

−2iA
∫
�

(ψ̄∂vψ)(u, v)du dv +A2
∫
�

|ψ |2(u, v)du dv. (5.8)

As a comparison operator we employ again the one withα(u) = α = const. when we
can solve the Schrödinger equation by separation of variables. We denote by{νn}∞n=1 and
{χn}∞n=1 the (properly ordered) sequences of the transverse eigenvalues and the corresponding
eigenfunctions, respectively. Since our system is now more complicated due to the presence
of the magnetic field, we have to distinguish several possibilities:

(1) No barrier, α = 0.

∀` ∈ Z : χ̃`(v) = 1√
2πR

ei `
R
v. (5.9)

The tilde marks the eigenfunctions corresponding to the eigenvalues( `
R

+A)2; to get{νn}
one has to arrange the latter into an ascending sequence. The respective eigenfunctions
will be then denoted as{χn}.

(2) α 6= 0, and 2RA 6∈ N.

∀n ∈ N \ {0} : χn(v) = Nne−iAv

(
ei
√
νnv − ei2πRA − e−i2πR

√
νn

ei2πRA − e−i2πR
√
νn

e−i
√
νnv

)
(5.10)

whereNn denotes the normalization factor chosen to makeχn a unit vector inL2(0, 2πR),

|Nn|2 := [
√
νn[1− cos 2πR(

√
νn +A)]]

×[4πR
√
νn(1− cos 2πRA cos 2πR

√
νn)

+2 sin 2πR
√
νn(cos 2πRA− cos 2πR

√
νn)]

−1 (5.11)

and the increasing sequence{νn} arises from the spectral condition

−α = 2`

(
cot 2πR`− cos 2πRA

sin 2πR`

)
. (5.12)

In analogy with lemma 2.2(a) we have
√
νn ∈ 1

2R (n− 1, n) for anyn ∈ N \ {0}.
(3) α 6= 0, andinteger flux, 2RA ∈ 2N.

The transverse eigenfunctions are of the form (5.10), while the spectral condition (5.12)
changes to

α = 2` tanπR`. (5.13)

Moreover, for̀ ∈ 1
R
N we always get the trivial solutions

χtrivn (v) = 1√
πR

e−iAv sin`v (5.14)

which are independent ofα. The roots{ν̃n} of (5.13) satisfy the estimates
√
ν̃1 ∈ 1

2R (0, 1)
and
√
ν̃n ∈ 1

2R (2n− 3, 2n− 1) for n ∈ N \ {0, 1}.



4492 P Exner and D Kreǰciřı́k

(4) α 6= 0, andhalf-integer flux, 2RA ∈ 2N + 1.
As in the two preceding cases the transverse eigenfunctions are still (5.10) but the spectral
condition (5.12) changes now to

−α = 2` cotπR`. (5.15)

The wavefunctions of the trivial solutions,` ∈ 1
2R (2N + 1) are (5.14) again and the

nontrivial roots of (5.15) satisfy
√
ν̃n ∈ 1

2R (2n− 2, 2n) for all n ∈ N \ {0}.
Remark 5.1. The integer and half-integer values here refer to the natural flux unit mentioned
above. The essential instrument for proving the existence of bound states is the requirement
χ1(0) 6= 0 (compare, e.g., to equation (3.4) above). In the absence of a barrier,α = 0, the
eigenfunctions are always positive (see (5.9)) andχ1(0) 6= 0 holds forα 6 αm := − 2 sin2 πRA

πR
.

In the case of a (half-)integer flux we have to exclude the trivial solutions (5.14). This is
analogous to the trivial-part exclusion described in remark 2.1; the difference is that the
triviality does not now come from the waveguide geometry, but rather from the magnetic field,
i.e., an external parameter. It is also clear that the ground state eigenfunction of the class
(5.10) can vanish at the barrier only ifα > 0 and the flux is half-integer.

In analogy with lemma 2.2 we have the following.

Lemma 5.2. Suppose that2RA 6∈ 2N + 1 or α 6 0. Then the functionα 7→ ν1(α) is strictly
increasing and continuous.

The ‘unperturbed’ Green function is the same as in the case of a double waveguide
(cf (2.9)); one has only to substitute the present transverse eigenfunctions and eigenvalues.

After this preliminary we can easily derive sufficient conditions under which a local
perturbation of the barrier coupling parameter induces the existence of bound states. The
argument mimics that of theorem 3.1, the only difference being an additional requirement of
the magnetic field.

Theorem 5.3.Assume:

(i) α − α0 ∈ L1
loc(R),

(ii) α(u)− α0 = O(|u|−1−ε) for someε > 0 as|u| → ∞,
(iii) the flux is not half-integer,2RA 6∈ 2N + 1, if α0 > 0.

ThenHα has at least one isolated eigenvalue below its essential spectrum,σess(Hα) =
[ν1(α0),∞), provided

∫
R(α(u)− α0) du < 0.

5.2. An example

We shall illustrate the above consideration on a ‘rectangular-well’ example analogous to that
of section 4. Most of the argument proceeds as there, one has just to use the different
eigenfunctions and to recompute for them the overlap integrals:

(χm, φn) = 8N̄0
mN

1
n

(e−i2πRA − ei2πR
√
ν0
m)(ei2πRA − e−i2πR

√
ν1
n ) (ν0

m − ν1
n)

×
[√
ν0
m sin 2πR

√
ν1
n

(
cos 2πRA− cos 2πR

√
ν0
m

)
−
√
ν1
n sin 2πR

√
ν0
m

(
cos 2πRA− cos 2πR

√
ν1
n

)]
(5.16)
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Figure 10. The quantum probability flow on the cylinder surface forÃ = 0.5, k̃ = 1.705 and
α̃1 = 10−5.

for α0 6= 0 6= α1 with m, n ∈ N \ {0}, and

(χm, φ`) = 4N̄0
m

√
ν0
m√

2πR(ν0
m − ( `R +A)2)

(
sin 2πRA + i cos 2πR

√
ν0
m

)
(5.17)

for α0 6= 0, α1 = 0 withm ∈ N \ {0}, ` ∈ Z. Note that in the latter case one has to substitute
theorderedbasis{φn}∞n=1 (together with the corresponding eigenvalues) into ansatz (4.6) to
make the numerical procedure of cut-off approximations convergent.

Unlessα1 < 0 we have to exclude here the possibility 2RA ∈ 2N+1 again (cf, e.g., (4.2)).
Next we can restrict our attention only to the situation when 2RA ∈ [0, 1) ∪ (1, 2) because
A appears in the overlap integrals (5.16), (5.17) and in the spectral condition (5.12) as an
argument of the periodic functions sin, cos; the integrals and the transverse eigenvalues are
the only quantities which affect the equations (4.9) and (4.18).

In fact, we can take 2RA from [0, 1) only because the replacement 2RA 7→ 2− 2RA
in (5.16) and (5.17) (the spectral condition (5.12) does not change at all) is equivalent to the
exchangeA 7→ −A which coincides with the conjugation of Hamiltonian (5.6). It is a well
known fact that such an operator has the same energies while the corresponding eigenfunctions
are given by a simple conjugation.

As an example, the evolution of the quantum probability flow w.r.t.α0 is illustrated in
figure 10.
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