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Abstract. We consider a quantum particle in a waveguide which consists of an infinite straight
Dirichlet strip divided by a thin semitransparent barrier on a line parallel to the walls which is
modelled by & potential. We show that if the coupling strength of the latter is modified locally,
i.e., it reaches the same asymptotic value in both directions along the line, there is always a bound
state below the bottom of the essential spectrum provided the effective coupling function is attractive
inthe mean. The eigenvalues and eigenfunctions, as well as the scattering matrix for energies above
the threshold, are found numerically by the mode-matching technique. In particular, we discuss
the rate at which the ground state energy emerges from the continuum and properties of the nodal
lines. Finally, we investigate a system with a modified geometry: an infinite cylindrical surface
threaded by a homogeneous magnetic field parallel to the cylinder axis. The motion on the cylinder
is again constrained by a semitransparent barrier imposed on a ‘seam’ parallel to the axis.

1. Introduction

Quantum mechanics of constrained systems is experiencing a new wave of interest connected
with the recent progress in semiconductor physics: nowadays experimentalists are able to
investigate the behaviour of electrons in structures of various shapes, at times rather elaborated.
The small size, extreme material purity, and its crystallic structure make it possible to derive
basic properties of these systems in a crude but useful model in which the electron is considered
as a free particle (with an effective mass) whose motion is constrained to a prescribed subset
of R? with d = 2, 3, possibly in the presence of external fields.

On the theoretical side, this has inspired questions about relations between spectral and
scattering properties of such systems and the underlying geometry and topology. A class
of systems which has attracted particular attention cqarantum waveguides.e. tubular
regions supporting a Sabalinger particle. It is known that a deviation from the straight
tube can induce the existence of bound states and resonances in scattering, vortices in
probability current, etc, be it bending [DE, DEM, DES, ES, GJ], protrusion or a similar local
deformation [AS, BGRS, EV1], waveguide coupling by crossing [SRW], or by one or several
lateral windows [ESTV, EV2, EV3] (the related bibliography is rather extensive; the quoted
papers contain many more references).

In this paper we are going to discuss a system closely related to the last named one. It
supposes again a double waveguide; however, the coupling between the two parallel ducts
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Figure 1. Double waveguide with & barrier.

will now entail a tunnelling through a thin semitransparent barrier rather than a window in a
hard wall separating them—cf figure 1. To obtain a solvable model we describe the barrier by
a s potential whose coupling strength may vary longitudinally: the Hamiltonian can be then
formally written as

Hy = —Ag +a(0)8(y) (1.1)

with the barrier supported by theaxis, whereQ := R x (—d>, d;) is the double-guide strip.

There are several motivations to investigate a leaky-barrier waveguide pair. First of all, it
is a generalization in a sense of earlier results, because the pierced-hard-wall case of [ESTV]
corresponds ta = 0 in the window andvr = oo otherwise. Recall that the latter can serve
to describe an actual quantum-wire coupler—see, e.g., [HTW, Ku]l—and such a model will
certainly become more realistic if the tunnelling through the barrier of a doped semiconductor
material separating the two guidesis taken into account. Atthe same time, the Hamiltonian (1.1)
covers for variousr a wide variety of situations.

On the mathematical side, tldepotential of (1.1) can be treated more easily than the
hard-wall barrier, since two operators with different functiansave the same form domain.

To illustrate the difference, one can compare the variational proof of existence of bound states
in theorem 3.1 below with the analogous argument of [ESTV]. A deeper application of the
quadratic-form perturbations allows us to construct the Birman—Schwinger theory for the
waveguide systems in question, in particular, to derive the weak-coupling behaviour of the
bound states. This will be done in a subsequent paper [EK].

Let us describe briefly the contents of the paper. In the next section we shall describe
the model and deduce its spectrum in the ‘unperturbed’, i.e. translationally invariant case.
In section 3 we demonstrate that a local change of the coupling parameter will cause the
existence of bound states provided it is negative in the mean. To illustrate the spectral and also
scattering properties we shall then discuss in detail the example in which the barrier function
is of a ‘rectangular well’ shape. In the final section we will show how the situation modifies if
the semitransparent barrier is placed at the surface of a cylinder threaded by a homogeneous
magnetic field.

2. Preliminaries

2.1. The Hamiltonian

LetQ =R x O with O := O, U 07 := (—d>, 0) U (0, d;) be the configuration space, i.e.,

the part ofR? occupied by the waveguide. Passing to the rational uhits, 2m = 1, we

may identify the particle HamiltoniafH, with the Laplace operator away from the waveguide
boundary and the barrier. To give meaning to the formal expression (1.1) one has to specify
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the boundary conditions. At the outer edges we assume the Dirichlet condition,

V(x, —d2) = Y (x,d1) =0 (2.1)
while the barrier is transversally the usdgdotential defined conventionally as
Y(x,04) = ¢(x,0-) =1 ¥ (x,0) Uy (x, 04) — ¥y (x, 0—) = a(x)¥ (x, 0) (2.2)

for anyx € R—cf [AGHH, section I.3]—where the subscript denotes partial derivative with
respect toy. The Hamiltonian domain is then

D(H,) = {y € W2(Q)|y satisfies (2.1) and (2.R) (2.3)

where the functionr : R — R, assumed to be piecewise continuous, determines the shape of
the barrier and represents thelependent coupling ‘constant’ of the interaction.

For the sake of simplicity we shall exclude the above-mentioned case of a Dirichlet barrier,
a(x) = oo at a subset dR. In that case all the operatofs, have the same form domain, and
the associated quadratic form is obtained by a simple integration by parts:

dal¥] :=/ VY P y) d dy+fa<x>|w<x,0>|2dx (2.9)
RxO R

D(ga) := (¥ € W3(R X (—da, d1))| ¥x € R: ¢ (x, —da) = ¥ (x, d1) = 0}. (2.5)

The form (2.4) is obviously symmetric and it is not difficult to check that it is closed and thus
indeed associated witH,. Hereafter we adopt the notation of [EST\: := maX{ds, d>},
D :=d; +d, and
min{dl, dz}
~ max(dy, da}
Without loss of generality we may assume thiakl d, = d.

2.2. The unperturbed system

If «(x) = « is a constant function, we can solve the Sclinger equatiorH,y = ky by
separation of variables. To get the transverse eigenfunctions we have to match smoothly the
solutions in the two ducts, sin£(y +d,) andC; sin£(y — d1), chosen to satisfy the condition

(2.1). If £dq, £d, are not multiples ofr we get thus the following condition on eigenvalues of

the transverse part of the Hamiltonian:

—a = £(cotldy + cotldy). (2.6)

Remark 2.1. If dq, d, are rationally related the Sckidinger equation can be also solved by
=50 = ”d—”z", n € N\ {0}. However, such wavefunctions are zergat 0, and therefore
mdependent ak. In this sense they represent a trivial part of the problem. A prime example
is the symmetric waveguide paify = d,, where this observation concerns every solution
antisymmetric w.r.ty = 0. It is reasonable to concentrate on the nontrivial part only. If

V= % = 5, we denote by, the subspace ilf?(—d., d1) spanned by the solutions of (2.6).

Putting then, := L?(R) ® G, we shall restrict our attention to the operaték, | #,; for
the sake of simplicity we shall denote the restriction by the syipalgain. The trivial part
is absent, of course, ifis irrational.

From the spectral condition (2.6) we get a sequence of eigenvalues (in the natural ascending
order) of (the nontrivial part of) the transverse operator; we denote {it,d8)}>2,. The
corresponding eigenfunctions are

Xn (s @) = (=17 N, sin/v,d; sin /v, (y + (=1 d)) 2.7)
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fory € O, j =1, 2, whereN,, is the normalization factor chosen in such a way fhatould
be a unit vector irL?(—d, dv), i.e.

an = — . 2/Vn y - - . (2.8)
Vndy SINC \/v,do + JVpd) sir? /Vndy — SiN/v,dy SIN /v, d> Sin /v, D

Furthermore, the Green function of the Hamiltonian (1.1) can be written explicitly:

o]

i )
GO[ s Vs ,7 /7k = elk”‘x_X| nY; _n /; 2.9
(x,y,x', ¥ k) nEZlen Xn (V3 ) X (Y5 @) (2.9)
where the effective momentum in thén transverse mode is = /k2 — v, (o).

Elementary properties of the transverse eigenvalues follow from the spectral
condition (2.6) by means of the implicit-function theorem; we collect them in the lemma
below.

Lemma 2.2. (a) Let {m;}>°, be the sequence obtained from the Net v—IN by natural
ordering. Theng;(n — 1) < Zm, 1 < /v, < Zm, < Zn holds for alln € N\ {0, 1}.
(b) The functiorw — v, () is strictly increasing and continuous for alle N\ {0}.

3. Existence of bound states

Depending on the choice of, the operators (1.1) offer a variety of spectral types. In this
paper we shall concentrate on the situation when the barrier describes a local perturbation of
the system with separating variables considered above. The locality is at that understood as
a decay of the functior; in other words, we shall assume that [im . a(x) = ag. Itis
important that the limiting valuey is the same at both directions.

Insuchacase, itis easytolocalize the essential spectrum. One employs asimple bracketing
argument similar to that of [ESTV, section Il]) squeeziflg between a pair of operators
with Dirichlet and Neumann conditions on segments perpendicular ta-tas placed to
both sides of the centre. By the minimax principle only the tails of the estimating operators
contribute to their essential spectra; since the ‘cuts’ can be chosen arbitrarily far we obtain
Oess (Hy) = [vl(OlO)’ 00).

Less trivial is the existence of a discrete spectrum. It is known that any ‘window’ in
the impenetrable barrier induces a bound state. This fact was established first for sufficiently
wide windows [Po]; later an independent and more general proof was given [ESTV] with no
lower bound on the window width. The present case is more complicated because the effective
coupling strengthw — «p can be sign-changing. We shall show that it is sufficient if it is
negative in the mean, thus creating a locally stronger tunnelling between the two channels.

Theorem 3.1. Assume thafi) « —ap € L} (R), (i) a(x) —ag = O(|x|~17¢) for somes > 0

as|x| — oo. If fR(ot(x) — ap) dx < 0, thenH,, has at least one isolated eigenvalue below its
essential spectrum.

Proof. We use a variational argument whose idea comes back to [GJ]; see also [DE, RB],
and [ESTV, section IlII] for a coupled waveguide system. First of all, assumption (ii) tells us
that lim;_ o [x|*** (e (x) — ap) = 0, i.e., to anys > 0O there isus > 1 such that

(3.1)

x| > as = ler(x) — a0l < T

It is useful to introduce a shifted energy form: for an arbitrérge D(q,) we put
Qul¥] := go[W] — vi(a0) I1¥I3. (3.2)
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Since the essential spectrum &, starts atvi(ag), we have to find a trial functiony

such thatQ,[¥] is negative. We obtain it by a suitable modification of the function
Wo(x, y) = x1(y; ao) Which formally annuls (3.2) forr = ag but does not belong ta2.

The trial function has to decay; in order to make the positive contribution from its tails to the
kinetic energy small, we employ an exterior scaling. We choose an intdrval[—a, a] for
somea > 1 and a functiorp € S(R) in such a way thap(x) < 1 andg(x) = 1 onA. Then

we can define the familjy, : o € R} by a scaling exterior tol:

@(x) if Ixl<a

(pa(x) = : (33)

¢(fa +o(x Fa)) if +x > a.
By construction]g, (x)| < 1 holds for allx € R. The sought trial function will be chosen in
the formW (x, y) = @, (x) x1(y; @o). We employ the relationgp, |15 = o ||¢||5, and

Ga[ V] = guo[ W] + /R (@(x)— ) W (x, O)P

ol W] = 1195 115 + va(@0) o 113
the last one of which is obtained by tedious but straightforward calculation. This yields

0u[¥] = oll@l13 + | x1(0; o) |? fR (@ (x) — ao)lgo (x)]? dx. (3.4)

We now split the integration region into two mutually disjoint patsandR \ .A. Using (3.1)
together with the above-mentioned boundggnwe arrive at the estimate

48| x1(0; o) |?

0u¥] < o ll3+ + 1 ao)|2/(a<x> “apdr.  (35)
R

By assumption we havﬁ%(oe(x) — ap) dx < 0 and since(1(0; ap) is nonzero, the last term is
negative; it is then enough to choasando sufficiently small to make,[W¥] negative. O

Remark 3.2. A case of particular interest concerns weakly coupled Hamiltonian of the type
(1.2), i.e. the situation whe differs fromeg only slightly. In that case one can develop a
Birman—Schwinger analysis in order to derive the perturbative expansion of the ground state
energy in terms of a parameter measuring the ‘smallnese’ ofag. This will be done in a
separate paper [EK]; here we just borrow a result for a further use in this work.

There are different ways in whiah— «g can be small. Suppose that the support of the
perturbation shrinks, i.e. introduce, (x) := «(x /o) with the scaling parameter € (0, 1]
and consider the limi# — 0+. We have the following result [EK].

Theorem 3.3. Suppose that — og is nonzero and belongs ©* (R, dx) N LY(R, |x|? dx)
for somee > 0. ThenH,, has for smallo at most one simple eigenvald&o) < vi(xo),
and this happens if and onlym(a(x) — ap) dx < 0. If this condition holds the following
expansion is valid:

Vi E@) = =21 Oéo)|2/R(Ol(X) — ag)dr

2 [e9)
o . 2 i 2
+z|X1(0, ao) nE=2 [ %1 (0; )|

@ 0/ Vu—vilx—x|
x | (a(x) — ag) ———(a(x’) — ag) dx dx
R2 Vp — V1

+0(0). (3.6)
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4. A ‘rectangular well’ example

To illustrate the above result and to analyse the behaviour of coupled waveguides in more detail
we shall now investigate an example. We choose the barrier funcfotthat the corresponding
Schibdinger equation can be solved numerically; this happenssif steplike function which
makes it possible to employ the mode-matching method. The simplest nontrivial case concerns
a ‘rectangular well’ of a width 2 > 0,
o1 if |x|<a
a(x) = .
ag if |x|<a

for somewy, ag € R. In view of theorem 3.1 this waveguide system has bound states if and
onlyif a1 < ap. In particular, one expects that in the case where- 0 andog is large positive
the spectral properties will be similar to those of the impenetrable barrier situation studied
in [ESTV]. On the other hand, the mode-matching method allows us to treat on the same
footing the scattering processes in our waveguide. Then there is no need to impose the above
condition, because the ‘barrier’ situatian, > «g is expected to exhibit nontrivial scattering
behaviour as well.

Henceforth, we shall denote the transverse eigenvalues in the two regigns-as, («;),
s :=0,1,n € N\ {0}. In view of the natural mirror symmetry with respect to theaxis
we may consider separately the symmetric and antisymmetric solutions, i.e. to analyse the
halfstrip with the Neumann or Dirichlet boundary conditionxat= 0, respectively. For
the sake of simplicity we shall also restrict our attention to the cas¢oin,} > «,, =
—(dl‘l +d2‘1), when the lowest transverse eigenvalue is positive everywhere in the waveguide.
The considerations presented below remain valid even without this assumption; one has just to
replace the trigonometric ground state eigenfunction for hyperbolic which makes the formulae
cumbersome.

4.1. Bound states

Let us first derive an estimate which allows us to roughly localize the eigenvalues. Itis based on
a bracketing argument similar to that used to specify the essential spectrum at the beginning of
section 3. The Hamiltonian can be squeezed between a pair of opefaibrss H, < HD),

with additional Dirichlet/Neumann ‘cuts’ at segments perpendicular to the waveguide axis,
x = +a. The spectra of the estimating operators can be easily found and the sought estimate
comes from the eigenvalues of the middle part situated befbm combination with the
minimax principle. In particular, we find that the numb¥érof isolated eigenvalues satisfies

the bounds
2
Np+1>N > Np = [—a,/vf—vﬂ
T

where [] denotes the entire part; this complements theorem 3.1. Furthermoreittthe
eigenvalueE, of H, is estimated by

(DTN m>2 (4.1)
(T ) sE ot (3 -
while the critical halfwidthz, at which the:th eigenvalue emerges from the continuum satisfies
the bounds

(n—1m

- a,

N
/.0 1
2,/v; — v

(4.2)

nw
<—.
/.0 1
2,/v; — v
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After this preliminary, let us pass to the mode-matching method. We start with the simpler
case when the waveguide exhibits a mirror symmetry w.r.txthgis, i.e.d; = d» = d.

4.1.1. The symmetric caself v = 1, the Hamiltonian decouples into an orthogonal sum
of the even and the odd parts, the spectrum of the latter being clearly trivial—cf remark 2.1.
The two symmetries allow us to restrict ourselves to the paft of the first quadrant, with
Neumann or Dirichlet condition in the segme®t d) of the y-axis, and take the transverse
eigenvalues determined by the spectral conditions

—ag = 20 cotéd if x>a

—oq = 2¢ cotld if 0<x<a.

The corresponding transverse eigenfunctions are

Xn = —NPsin /vo(y — d) if x>a

(4.3)
¢ = —an siny/vi(y — d) if 0<x<a
whereN? is a normalization factor chosen to makg ¢, unit vectors inL?(0, d), i.e.
4./v3
(N$)? = f —. (4.4)
2,/vid —sin2,/vsd
The overlap integrals of elements of the two bases are easily seen to be
NON1
Otms 0) = 5" <,/v,} sin,/v%d cos,/vld — /v sin,/vld cos,/vg) . (4.5)
Vin = Va
A natural ansatz for the solution of an ene®)e [v], v9) is
oo
Wya(x,y) =Y b€y, (y)  for x>a
n=1
coshp, x (4.6)
0 coshp,a
\I{Y/a(x,y):Za;/“: _ }qﬁn(y) for 0<x<a
] s!nhpnx
sinhp,a

where the subscripts and superscripts (we will omit them for the mostspartlistinguish the
symmetric and antisymmetric case, respectively. The longitudinal momenta are defined by

qn::‘/\)’?—E pn:I‘/U}}—E.

As an element of the domain (2.3), the functignshould be continuous together with its
normal derivative at the segment dividing the two regions; a. Using the orthonormality
of {x,} we get from the requirement of continuity

bm = Zan(Xma ¢n) (47)
n=1
In the same way, the normal-derivative continuityat a yields
= tanh
bnGm + ;anl)n { coth} (Pn@)(Xm» n) = 0. (4.8)

Substituting from (4.7) to (4.8), we can rewrite it as an operator equation
Ca=0 (4.9)
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where

coth

with the overlap integrals given by (4.5).

It is straightforward to compute the norms of the functions (4.6); since, annp,
tend to%; asn — oo (see lemma 2.24)), the square integrability of requires the sequences
{a,} and{b,} to belong to the spac& (n1).

To make sure that the equation (4.9) makes sense, it is enough to noticewhist én
eigenvector ofH,, it must belong to the domain of any integer power of this operator. It is
easy to check that

Vi e N\{0}: W e D(H) & {a,), (b} € ?(n*). (4.11)

Hence, the sought sequences should belod§td) for all » > —1, i.e. both sequences have a
faster than powerlike decay. This fact also justifigsosteriorithe interchange of summation

and differentiation we have made in the matching procedure. Furthermore, one can use it to
check the existence of a convergent series of cut-off approximants to the solutions in the same
way as in [ESTV, section IV.1].

Con = (Qm + D {tanh} (pna)) (Xm» Pn) (4-10)

Remark 4.1 (an alternative method).We can use the orthonormality @f, } instead of{ x,,}
and expres$a, } in analogy to (4.7), and then substitute it into (4.8). We find that the coefficient
sequencéb, } is then determined by the following equation:

b+Kb=0 (4.12)
where

1 o0
Kon 1= = 3Ot 900 { f(‘)r;{]‘} (Pra) (G ). (4.13)
m k=1

The two approaches (4.9), (4.12) are, of course, equivalent. However, it may be useful to
combine them in order to get a good idea about the numerical stability of the solution. For
instance, in the situation of [ESTV] the approximants of (4.9) approach the limiting values
from above, while those referring to (4.12) are increasing.

4.1.2. The asymmetric caselLet us pass now to the case, when the widths of the ducts are
nonequaly # 1. In view of the mirror symmetry, we shall consider the right-halfplane part
of © only, with the Neumann and Dirichlet condition on the segmerak| d1] of the y-axis.
The asymmetric case differs from the previous one just in the choice of transverse basis. Now
we can take
Xn(¥) 1= Xn(y; o) if x>a
G (y) = X (ys 1) if 0<
wherex, (-, a,) are of the form (2.7) with the norm¥? given by (2.8). The corresponding
eigenvalues?, v! are then determined by

—ag = £(cotld; + cotldy) if x
—a1 = £(cotldq + cotldy) if O

(see (2.6)) and the overlap integrals are

NON}
, . . .
Otms D) = ﬁ <,/v,} siny/v2dy sin,/vOd, sin,/viD
m

— /9 sin\/v»,}dl sin,/vld, sin v,%D). (4.15)

(4.14)

X <a

>
<

= Q

<a
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The rest of the argument does not change and one has again to solve the equation (4.9)
(respectively, (4.12)). By a straightforward modification of the above argument, one can also
check that the coefficient sequences have a faster than powerlike decay and that the equation
can be solved by a sequence of truncations.

4.2. Scattering

As we said in the opening of this section, the scattering can be treated in an analogous way.
The incident wave is supposed to be of the formi &y, (v; ao), i.e., to come from the right

in therth transverse mode; we have introduced the effective momehtusa /k% — v0. We

denote byr,,, t,,, respectively, the corresponding reflection and transmission amplitudes to
thenth transverse mode. Due to the mirror symmetry, we can again separate the symmetric
and antisymmetric situation w.rt.= 0 and write

T'rn = %(p;n +10/£‘ln) Irn = %(p:n - p;ln) (416)

wherep?,, o = s, a, are the reflection amplitudes in a half of our waveguide with the Neumann
and Dirichlet condition at = 0, respectively. We use the following ansatz:

o0
Wosa(r, y) = Y (€ 00 4 prladbeC=Dyy (3 for x>a
n=1
(4.17)

COSpyx
cosp,a

00
\Ils/a(xs y) = Zaz/a {
n=1

for the total energy? of the incident wave in theth mode. The quantitie, := \/k2 — vl
are effective momenta in the ‘interaction’ region. Matching these functions smoothky at
we arrive in the same way as above at the equation

. }¢n(y) for 0<x<a
Sinppx
sinp,a

Ca=f (4.18)
where

Co = (ikm +py { _t"’(‘:r(‘)t} (Pna)> (s ) (4.19)

Fn = 2ikSym (4.20)

where the index corresponds to the incident wave and the overlap integrals are given again
by (4.15). The reflection amplitudes are then given by

[o.¢]
Prm = _Srm + Zan (Xma ¢n) (421)
n=1
They determine the fulf-matrix via (4.16). A quantity of direct physical interest is rather the
conductivity given by the Landauer formula. If we express it in the standard wfitg: 2it
equals
[£] k 5
Gk) = L\ tn (k 4.22
(k) m;km| 5] (4.22)
where t,,, (k) are the coefficients (4.16). The summation runs over all open channels.
Another physically interesting quantity is the probability flow distribution associated with
the generalized eigenvectdr = ¥, + ¥, which is defined in the standard way,

J@ =2Im (U(H V(). (4.23)
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Figure 2. Bound state energies versus the halfwidtim the symmetric case farg = 10° (CJ),
50 (0), 10(%), 5(x), 2(+), 0.5 (o).

4.3. Numerical results

Since the spectrum behaves naturally at scaling transformations it is reasonable to solve
equations (4.9) and (4.18) in the natural non-dimensional quantities. We mark them by tilde
and use them to label the axis in the figures, eig= da, o, = &,/d, E = (/d)?E or

k = (/d)k.

4.3.1. Bound states.

Eigenvalues. Figure 2 shows the bound-state energies as functions of the ‘window’ halfwidth

a for an ‘empty window’,«; = 0. Several curves referring to different values of the barrier
coupling constant are plotted. In accordance with the general results of section 4.1, the
energies decrease monotonously with the increasing ‘window’ width and one can sandwich
them between the estimates (4.1). We also see that for adixled energies increase with
respect taxg andv; recall that their number increases as a functiomgdfut it decreases as the
waveguide becomes more asymmetric—these facts are clear from (4.1), (4.2), and lemma 2.2.
It is illustrative to confront our results for large with the energies computed in [ESTV] for

the case which corresponds formallyi®= oo. Comparing figure 2 with figure 2 of [ESTV]

we see that our result féi; = 10° is practically identical with the latter.
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Figure 3. Ground state eigenfunctions in the symmetric case far= 0.15.

Eigenfunctions. The evolution of the ground state wavefunction with respecigtéor an
empty window of the fixed halfwidth = 0.15 isillustrated in figure 3. If the barrier tunnelling
is negligible @ = 10°, the picture is indistinguishable from figure 3in [ESTV]. &sbecomes
smaller we see how the wavefunction part penetrating the barrier grows.

Threshold behaviour. Consider again the empty-window casg,= 0. As a consequence
of theorem 3.3 we get for the ground state energy for any fixeaind a narrow window the
asymptotic formula (cf (3.6))

E(a) = v? —ca’+ O(as) c'= a2a§|xl(0; a0)|4. (4.24)

On the other hand, in the case of a window in the Dirichlet barigt: oo, it was conjectured
in [ESTV] that we may suppose

E() = (%)z — Cw)a* + 0 (4.25)

asa — 0+. The conjecture is supported by a two-sided asymptotic estimate [EVZ2]: there are
positivecs, ¢, such that

4 T2 4
—c1a” < E(a) — (E> < —coa

(for a generalization of this result to a larger number of windows and higher dimensions
see [EV3]). Quite recently, a proof of (4.25) has been proposed by Popov [Pop].
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Figure 4. Narrow-window asymptotic power and coefficient as functionsgof

This seemsto be a paradox. Inorderto make sense of these considerations, we suppose that
E(a) = v? — ca? for smalla of an interval 0016 < G < Gpax (Gmax = Gmax (%0) iS chosen in
such away asto include the best correlated points), and investigate numerically the dependence
of the coefficientss andc (¢ = d?*2c/n?) onag. The powerlike asymptotic behaviour is
confirmed when we redraw the first eigenvalue curves of figure 2 in the logarithmic scale. The
obtained dependence of the coefficientsogrin the symmetric case = 1, is illustrated in
figure 4. We see that the power reaches the vadues2, 4 for small and largey, respectively
(a slight shift in the first graph is due the truncation; the convergence becomes very slow for
smalla). Atthe same time, the numerically foundor smallxg coincides with that of (4.24).

Of course, the asymptotical behaviour is governed by (4.24) for any digit€he above
result says only that the transition from biquadratic to quadratic asymptotics occurs for large
ap at values of: still smaller than those we have used.

Nodal lines. In figure 5 we plot the third eigenfunction. Its nodal lines are almost straight
showing thus that the ‘spikes’ at the window edges act almost as a hard barrier. On the other
hand, a simple argument based on the reflection principle shows that the nodal lines cannot
be straight. Closer inspection shows that they have the form of a bow bent outward. The
maximum bending is shown in figure 6. It decreases rapidly with the window width which
confirms the tunnelling nature of the effect. Nodal lines of higher eigenfunctions exhibit (as
functions ofwg) irregularities connected with the changes in the number of the modes.
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Figure 5. The eigenfunction of the second excited statevfer 1,a/d = 5,21 = 0.

4.3.2. Scattering.

Conductivity. Figure 7 illustrates the evolution of the conductivity for the particle coming
from the right and leaving to the left as a function of the momentwend the widthd,. We

see that the perturbatiorxg in the window, deforms the ideal steplike shape with jumps at
transverse thresholds; deep resonances are clearly visible. For an almost impenetrable barrier,
ao = 10°, we practically reproduce figure&(of [ESTV].

Probability flow. Examples of the quantum probability flow are shown in figure 8. The flow
patterns change with the momentum of the incident particle and the vade ©hey exhibit
conspicuous vortices at the resonance energies which correspond to the ‘trapped part’ of the
wavefunction. An interesting phenomenon is illustrated on the first two graphs of figure 8:
for ap = 10° there is a double vortex (corresponding to the sharp stopping resonance of
figure 7), right-handed in the upper duct, while fay = 50 we get a left-handed vortex.

The conductivity is small in these situations so the waveguide system is effectively closed for
the particle transport. As decreases the conductivity grows and the waveguide opens—
cf figure 8 forag = 10, 2.

5. An Aharonov-Bohm cylinder

In the closing section we want to show now how the preceding considerations modify for a
different geometry: we consider a nonrelativistic quantum particle living on the surface of an
infinite straight cylinder of a radiug, which is threaded by a homogeneous magnetic field
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Figure 6. The maximum bending of nodal lines of third eigenfunctions in the symmetric case as a
function of g for a fixed window width.

B parallel to the cylinder axis. We assume that the motion is further restrictedbagier
supported by a line parallel to the axis.

5.1. General considerations

The configuration space is sketched in figure 9 where we indicate also how the coordinate
system is chosen. In these coordinates we have

Q= {(x,y,2) € R¥y?+ 72 = R?}. (5.1)
Choosing the gauge so that the electromagnetic potentialsf@ifil= 0 andﬁ(i) = %E X X,
the Hamiltonian acquires the form

~ = B B2R?

H, = (—iV+A)?=—A— 1= (v0: = 20,) + (5.2)
away from the barrier, wher@ := |B|; as before we put = 2m = 1, and alse = —1 having

in mind an electron. The subscrigptindicates the real function which defines the shape of

the barrier as in the strip waveguide situation; it will enter the boundary condition (5.4) below.

The vector potential has, obviously, the angular compoAgnt A and it equals
1 ¢

A= -BR

SBR =0 (5.3)
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Figure 7. Right-left conductivity as a function @f, d> ford = 7,a = 27, @1 = 0.

whereg is the magnetic flux through the cylinder. Recall that in the rational units we use here,
the natural unit of the magnetic flux g := (27)~1. Since we deal with a quantum system
living on a surface itis natural to ‘unfold’ it and to study (5.2) on a planar strip with appropriate

boundary conditions, namely
Y(u,04) =¥, 2rR—) = ¢ (u,0) Yo(u, 0+) — Y, (u, 21 R—) = a(u)yr (u, 0) (5.4)
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Figure 9. Cylindrical strip with as barrier in axial magnetic field.

where the subscript denotes again a partial derivative. To this aim, we introduce the unitary
transformatiorl/ : L?(Q2) — L?(R x [0, 27 R], du dv) by

— Y rsint
Uy (u,v) .=y (u RcosR, R sin R> (5.5)
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which maps onto the stripe2 := R x [0, 27 R]; the operatotH, is then unitarily equivalent
to

H, '=UH, U = -8+ (i3, + A)? (5.6)
with the domain
D(H,) = {¢ € W2(Q) | Yu € R : b.c.(5.4) are satisfiefl (5.7)

We will need also the quadratic forgy associated wittH,,. Its domain isD(g,) := Wzl(Q)
and

qa[lﬁ]3=/ |V¢|2(u,v)dudv+/a(u)IW(u,O)Izdu
Q R

—2iA/(1/_/8v1ﬁ)(u,v) du dv+A2f [ |2(u, v) du dv. (5.8)
Q Q

As a comparison operator we employ again the one wiil) = « = const when we

can solve the Schdinger equation by separation of variables. We denotéupy?° , and

{xn}52, the (properly ordered) sequences of the transverse eigenvalues and the corresponding
eigenfunctions, respectively. Since our system is now more complicated due to the presence
of the magnetic field, we have to distinguish several possibilities:

(1) No barrier, « = 0.
1
27 R

The tilde marks the eigenfunctions corresponding to the eigenveﬁres&)z; to get{v,}
one has to arrange the latter into an ascending sequence. The respective eigenfunctions
will be then denoted afsy, }.

(2) a Z0,and RA ¢ N.

VeeZ: Fe(v) = dev. (5.9)

@2TRA _ a—i2TRvy

—i. /v,
s e ) (610)
whereN, denotes the normalization factor chosen to maka unit vector inL?(0, 2 R),

IN,|% = [Vl — cOS 2t R( /v, + A)]]
x[47 R\/v,(1 — cos 2t RA cos 2t R\/v,)

Vn e N\ {0} : u(v) = N, &4 (ei v

+25SiN 2T R\/1,(COS 2r RA — COS 2r R /v,)] (5.11)
and the increasing sequengg} arises from the spectral condition
COSZrRA
—a=20|CcOt2rRe — —— ). 5.12
* ( sin 2T R¢ ) ( )

In analogy with lemma 2.2j) we have,/v, € %(n —1,n) foranyn € N\ {0}.
(3) a # 0, andinteger flux 2RA € 2N.
The transverse eigenfunctions are of the form (5.10), while the spectral condition (5.12)

changes to
a = 2¢tanz RE. (5.13)
Moreover, fort € %N we always get the trivial solutions
. 1 .
triv —1AV o
(V) = ——¢€ sinfv 5.14
* J7R 514

which are independent ef. The roots(7, } of (5.13) satisfy the estimategi; € 5= (0, 1)
andv/v, € 5(2n —3,2n — 1) forn € N\ {0, 1}.
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(4) o # 0, andhalf-integer flux2RA € 2N + 1.
As in the two preceding cases the transverse eigenfunctions are still (5.10) but the spectral
condition (5.12) changes now to

—a = 2¢cotm RE. (5.15)

The wavefunctions of the trivial solutiong, %(ZN + 1) are (5.14) again and the
nontrivial roots of (5.15) satisfy/7, € 5= (2n — 2, 2n) foralln € N\ {0}.

Remark 5.1. The integer and half-integer values here refer to the natural flux unit mentioned
above. The essential instrument for proving the existence of bound states is the requirement
x1(0) # 0 (compare, e.g., to equation (3.4) above). In the absence of a bawrier,0, the
eigenfunctions are always positive (see (5.9)) an@®) # 0 holds fora < «,, := — "’S'FF—”RA

In the case of a (half-)integer flux we have to exclude the trivial solut|ons (5. 14) This is
analogous to the trivial-part exclusion described in remark 2.1; the difference is that the
triviality does not now come from the waveguide geometry, but rather from the magnetic field,
i.e., an external parameter. It is also clear that the ground state eigenfunction of the class
(5.10) can vanish at the barrier onlydf > 0 and the flux is half-integer.

In analogy with lemma 2.2 we have the following.

Lemma 5.2. Suppose tha2RA ¢ 2N + 1 or « < 0. Then the functior — vy («) is strictly
increasing and continuous.

The ‘unperturbed’ Green function is the same as in the case of a double waveguide
(cf (2.9)); one has only to substitute the present transverse eigenfunctions and eigenvalues.

After this preliminary we can easily derive sufficient conditions under which a local
perturbation of the barrier coupling parameter induces the existence of bound states. The
argument mimics that of theorem 3.1, the only difference being an additional requirement of
the magnetic field.

Theorem 5.3. Assume:

(I) o —oop € Llloc(R)y
(ii) a(u) —ag = O(Ju|~17¢) for somes > 0as|u| — oo,
(iii) the flux is not half-integeRA ¢ 2N + 1, if ag > 0.

Then H, has at least one isolated eigenvalue below its essential spectrypmiH,) =
[v1(ao), 00), provided [, (e (1) — ao) du < O.

5.2. An example

We shall illustrate the above consideration on a ‘rectangular-well’ example analogous to that
of section 4. Most of the argument proceeds as there, one has just to use the different
eigenfunctions and to recompute for them the overlap integrals:

8NON1
(e-2nRA _ @2TR\/V) (@2nRA _ gri2nRy/vE ) 0 — 1)

x[‘/vgsinZnR v,}(cosZrRA—cosZrR v,%)
—\/v>,}sin 2R, /v2 <COSZTRA—COSZTR\/U>"1>] (5.16)

(Xm» Pn) =
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Figure 10. The quantum probability flow on the cylinder surface for= 0.5, k = 1.705 and
@ =105,

for ag # 0 # a1 withm, n € N\ {0}, and

N 0
Xms e) = 4N’”m (sin 2tRA+icos2tR v},{) (5.17)
V2rR(WY — (£ + A)?)

forag # 0,1 = Owithm € N\ {0}, £ € Z. Note that in the latter case one has to substitute
the orderedbasis{¢, }>° ; (together with the corresponding eigenvalues) into ansatz (4.6) to
make the numerical procedure of cut-off approximations convergent.

Unlessx; < 0 we have to exclude here the possibilitg 2 € 2N+1 again (cf, e.g., (4.2)).
Next we can restrict our attention only to the situation wh@&n2< [0, 1) U (1, 2) because
A appears in the overlap integrals (5.16), (5.17) and in the spectral condition (5.12) as an
argument of the periodic functions sin, cos; the integrals and the transverse eigenvalues are
the only quantities which affect the equations (4.9) and (4.18).

In fact, we can take RA from [0, 1) only because the replacemem 2 — 2 — 2RA
in (5.16) and (5.17) (the spectral condition (5.12) does not change at all) is equivalent to the
exchanged — —A which coincides with the conjugation of Hamiltonian (5.6). It is a well
known fact that such an operator has the same energies while the corresponding eigenfunctions
are given by a simple conjugation.

As an example, the evolution of the quantum probability flow wgtis illustrated in
figure 10.
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